Overview of Duke ITk activities

US ATLAS ITk meeting

SLAC, July 7, 2015

Mark Kruse

Duke ITK Personnel and Funding

- Faculty: Ayana Arce, Mark Kruse
- Technical support: Brogan Thomas (0.8 FTE)
- Postdocs:
 - Enrique Kajomovitz (20%)
 - o TBD (50%)
- Grad students:
 - Ping Zhao (100%, current qualification task)
 - O Chen Zhou (50%, completed qualification task)
 - Doug Davis, Kevin Holway (20%, Qualification tasks on TRT SW)
- Undergrads: ~6 at any one time
- Funding Support:
 - US ATLAS (Brogan Thomas)
 - Duke DOE base grant (faculty, postdocs, grad students)
 - Undergrads (Duke)

History: started with HSIO test setup (with ABCn250 1-chip board) to gain experience with testing procedures/code

The ATLAS silicon upgrade HSIO setup at Duke

Summary of current Duke activities (more details next slides)

- Developing Atlys setup
- Developing module testing infrastructure (cooling, etc.)
- Developing interlock system
- Working on simulations (for module testing, and separately in overall ITK simulation group)
- Coordinating SR1@CERN setup(s)

HSIO → Atlys

 We have purchased an Atlys board (\$280) and Peter Phillips (RAL) has sent us a VMOD-IB (and has helped us with setup)

- Ping Zhao (grad student) is working with UK (mostly Peter Phillips) to get this up and running at Duke
- Will need test parts (ABCn130) on distribution list for these

Module testing

- In coordination with BNL, developing a "standardized" module testing setup that will be easy to replicate elsewhere:
 - Cooling system (want capability down to -40C)
 - Closing in on what chiller to use (Brogan, with Dave Lynn and Will Emmet)
 - Humidity control: dry air system
 - Looking into Puregas HR Series Regenerative Desiccant Air Dryer
 - Could also simply use nitrogen
 - Cooling block/support: can machine at Duke drawings from UK
 - Module enclosure (being designed by Brogan Thomas)

Module testing interlock system

- Modules are valuable need to interlock on temp and perhaps humidity
- Undergrad project
- We have developed a simple Arduino based temperature and humidity monitoring system that can shut down module power when preset thresholds reached
- Requires PS with external input for interlocking

- Have just had PCB's printed and now putting it all together from bread-board model
- Total cost ~\$50

Simulation studies

Module testing thermal simulations (Ping Zhao – grad student)

- Useful for designing cooling and interlock system
- Here assume -30C into cooling block, total of 5W power, and various other assumptions

ITK simulation

 We are involved in the ITK simulation group. As part of Chen Zhou's (grad student) qualification task he was studying different geometries, impact of pile-up and HL, and differences between full and fast simulation. This will be continued by new grad students

Duke facilities

Duke Physics machine shop

- We have free shop time alloted to us, that mostly goes unused we will machine some cooling blocks and module enclosures once design has been settled
- Possibility for B field stress tests at Duke
- We have access to the Duke SMIF (Machine and Instrumentation facility) which has a semi-automatic wirebonder, probe station, clean room (at any desired level) – however, probably only useful for repairs as/if needed

Additional points

- We are working under the assumption that we can play a direct role in testing modules – in particular, various stress tests and perhaps burning-in in coordination with the labs, in addition to training personnel who can relocate to an ASC (for us at BNL and/or ANL)
- However, this model needs to be better defined, and the coordination between universities and labs more formally laid out
- We will also need access to test parts we're on "the list" but they are hard to come by at the moment
- We're a small university group with limited resources: would be great to organise a conglomeration of similar groups coordinated through one of the labs (for us BNL)